Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Med Virol ; 95(7): e28912, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37403888

RESUMEN

Influenza A(H3N8) viruses first emerged in humans in 2022, but their public health risk has not been evaluated. Here, we systematically investigated the biological features of avian and human isolated H3N8 viruses. The human-origin H3N8 viruses exhibited dual receptor binding profiles but avian-origin H3N8 viruses bound to avian type (sialic acid α2, 3) receptors only. All H3N8 viruses were sensitive to the antiviral drug oseltamivir. Although H3N8 viruses showed lower virulence than the 2009 pandemic H1N1 (09pdmH1N1) viruses, they induced comparable infectivity in mice. More importantly, the human population is naïve to H3N8 virus infection and current seasonal vaccination is not protective. Therefore, the threat of influenza A(H3N8) viruses should not be underestimated. Any variations should be monitored closely and their effect should be studied in time for the pandemic potential preparedness purpose.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N8 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Aves , China/epidemiología
2.
BMC Infect Dis ; 23(1): 211, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024804

RESUMEN

BACKGROUND: The influenza viruses pose a threat to human health and medical services, and vaccination is an important way to prevent infection. However, the effectiveness of influenza vaccines is affected by various aspects. This study aimed to explore factors related to the immune response to influenza vaccines. METHODS: The study was conducted from September 2019 to September 2021, and a total of 593 volunteers were recruited from the Center for Disease Control and Prevention in 3 provinces in China. The hemagglutination inhibition assay was used to measure antibody levels. The Chi-square test, multivariable logistic regression analysis, and sum-rank test were used to analyze the factors associated with influenza vaccine immune response. RESULTS: The Chi-square test showed that seroconversion rates and response rate were associated with age group, vaccination history, chronic conditions, the frequency of colds, and region (P < 0.05). The multivariable logistic regression analysis showed that age was an important factor that affected participants' seroconversion rates for A/H1N1, A/H3N2, B/Victoria, and response status (18-64 vs. ≤5: OR = 2.77, P < 0.001; ≥65 vs. ≤5: OR = 0.38, P = 0.01; 18-64 vs. ≤5: OR = 2.64, P = 0.03). Vaccination history was also an affecting factor for A/H1N1, B/Victoria, and response status (yes vs. no: OR = 0.4 / 0.44 / 0.25, P < 0.001). The frequency of colds and chronic conditions were also affecting factors for participants' seroconversion rates and response levels to different degrees. The sum-rank test showed that the fold changes for A/H1N1, B/Victoria, and B/Yamagata were associated with age group and vaccination history (P < 0.01). The fold changes for A/H3N2 were associated with the frequency of colds (P < 0.05), and those for B/Victoria were associated with gender and chronic conditions (P < 0.05). CONCLUSIONS: Vaccination history, age, health condition, and frequency of colds were important factors affecting the seroconversion rate of the influenza vaccine in human. There is a need for developing optimized vaccination strategies for vulnerable groups to improve the efficacy of influenza vaccines in human.


Asunto(s)
Resfriado Común , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/prevención & control , Virus de la Influenza B , Subtipo H3N2 del Virus de la Influenza A , Vacunas de Productos Inactivados , Anticuerpos Antivirales , Pruebas de Inhibición de Hemaglutinación , Inmunogenicidad Vacunal
3.
Front Genet ; 14: 1059447, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845396

RESUMEN

Background: Influenza is a global public health problem for its detrimental impact on human health. Annual vaccination is the most effective prevention of influenza infection. Identifying host genetic factors associated with the responsiveness to influenza vaccines can provide clues for developing more effective influenza vaccines. In this study, we aimed to explore whether the single nucleotide polymorphisms in BAT2 are associated with the antibody responses to influenza vaccines. Method: A nested case-control study was conducted in this research. 1968 healthy volunteers were enrolled and 1,582 of them from a Chinese Han population were eligible for further research. According to the hemagglutination inhibition titers of subjects against all influenza vaccine strains, a total of 227 low responders and 365 responders were included in the analysis. Six tag single nucleotide polymorphisms in the coding region of BAT2 were selected and genotyped using the MassARRAY technology platform. Univariable and multivariable analyses were conducted to evaluate the relationship between variants and antibody responses to influenza vaccination. Results: Multivariable logistic regression analysis showed that, compared with the BAT2 rs1046089GG genotype, the GA + AA genotype was correlated with decreased risk of low responsiveness to influenza vaccines after adjusting for gender and age (p = 1.12E-03, OR = .562, 95%CI: .398-.795). rs9366785 GA + AA genotype was associated with a higher risk of low responsiveness to influenza vaccination compared with the GG genotype (p = .003, OR = 1.854, 95%CI: 1.229-2.799). The haplotype consisting of BAT2 rs2280801-rs10885-rs1046089-rs2736158-rs1046080-rs9366785 CCAGAG was correlated with a higher level of antibody response to influenza vaccines compared with haplotype CCGGAG (p < .001, OR = .37, 95%CI: .23-.58). Conclusion: Genetic variants in BAT2 were statistically associated with the immune response to influenza vaccination among the Chinese population. Identifying these variants will provide clues for further research on novel broad-spectrum influenza vaccines, and improve the individualized influenza vaccination scheme.

4.
Infect Dis Poverty ; 11(1): 74, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768826

RESUMEN

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, seasonal influenza activity declined globally and remained below previous seasonal levels, but intensified in China since 2021. Preventive measures to COVID-19 accompanied by different epidemic characteristics of influenza in different regions of the world. To better respond to influenza outbreaks under the COVID-19 pandemic, we analyzed the epidemiology, antigenic and genetic characteristics, and antiviral susceptibility of influenza viruses in the mainland of China during 2020-2021. METHODS: Respiratory specimens from influenza like illness cases were collected by sentinel hospitals and sent to network laboratories in Chinese National Influenza Surveillance Network. Antigenic mutation analysis of influenza virus isolates was performed by hemagglutination inhibition assay. Next-generation sequencing was used for genetic analyses. We also conducted molecular characterization and phylogenetic analysis of circulating influenza viruses. Viruses were tested for resistance to antiviral medications using phenotypic and/or sequence-based methods. RESULTS: In the mainland of China, influenza activity recovered in 2021 compared with that in 2020 and intensified during the traditional influenza winter season, but it did not exceed the peak in previous years. Almost all viruses isolated during the study period were of the B/Victoria lineage and were characterized by genetic diversity, with the subgroup 1A.3a.2 viruses currently predominated. 37.8% viruses tested were antigenically similar to reference viruses representing the components of the vaccine for the 2020-2021 and 2021-2022 Northern Hemisphere influenza seasons. In addition, China has a unique subgroup of 1A.3a.1 viruses. All viruses tested were sensitive to neuraminidase inhibitors and endonuclease inhibitors, except two B/Victoria lineage viruses identified to have reduced sensitivity to neuraminidase inhibitors. CONCLUSIONS: Influenza activity increased in the mainland of China in 2021, and caused flu season in the winter of 2021-2022. Although the diversity of influenza (sub)type decreases, B/Victoria lineage viruses show increased genetic and antigenic diversity. The world needs to be fully prepared for the co-epidemic of influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus globally.


Asunto(s)
COVID-19 , Gripe Humana , Orthomyxoviridae , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/epidemiología , China/epidemiología , Humanos , Gripe Humana/epidemiología , Neuraminidasa/genética , Orthomyxoviridae/genética , Pandemias , Filogenia , SARS-CoV-2 , Estaciones del Año
5.
Emerg Infect Dis ; 28(7): 1332-1344, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35476714

RESUMEN

The recent rise in the frequency of influenza A(H5N6) infections in China has raised serious concerns about whether the risk for human infection has increased. We surveyed epidemiologic, clinical, and genetic data of human infections with A(H5N6) viruses. Severe disease occurred in 93.8% of cases, and the fatality rate was 55.4%. Median patient age was 51 years. Most H5N6 hemagglutinin (HA) genes in human isolates in 2021 originated from subclade 2.3.4.4b; we estimated the time to most recent common ancestor as June 16, 2020. A total of 13 genotypes with HA genes from multiple subclades in clade 2.3.4.4 were identified in human isolates. Of note, 4 new genotypes detected in 2021 were the major causes of increased H5N6 virus infections. Mammalian-adapted mutations were found in HA and internal genes. Although we found no evidence of human-to-human transmission, continuous evolution of H5N6 viruses may increase the risk for human infections.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , China/epidemiología , Humanos , Mamíferos , Persona de Mediana Edad , Filogenia , Virus Reordenados/genética
6.
Front Genet ; 13: 790914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198005

RESUMEN

Background: The annual death associated with seasonal influenza is 290,000-650,000 globally, which can be effectively reduced by influenza vaccination. However, the protective hemagglutination inhibition (HAI) antibody response to influenza vaccine is affected by many factors, among which single nucleotide polymorphisms (SNPs) in the human leukocyte antigen (HLA) region can alter the antigen-presenting function of the HLA molecule, thus influencing the process of antibody mounting against vaccine antigen. Methods: Healthy subjects of the Han nationality were recruited and received seasonal trivalent influenza vaccine. Paired serum samples collected on and approximately 28 days after vaccination were tested in parallel by HAI assays. HLA alleles related to the immune response to influenza vaccine reported in the previous literature were summarized, and six corresponding tag SNPs were selected and genotyped using the MassARRAY technology platform. Results: The effects of HLA SNPs on HAI antibody response to influenza vaccine varied with different vaccine antigens. The AA genotype of rs41547618 was correlated with low A/H1N1-specific antibody titer compared with the GG + GA genotype (p = .007). The TT genotype of rs17885382 was correlated with low A/H3N2-specific antibody titer compared with the CC + CT genotype (p = .003). In addition, haplotype consisting of rs41542812-rs17885382-rs2068205-rs41547618-rs6905837-rs9270299-CCTGCA was correlated with non-responsiveness to influenza vaccine (OR = 2.39, 95% CI = 1.02-5.62). Conclusion: HLA SNPs were associated with HAI antibody response to influenza vaccine, which can help in a better understanding of the varied responsiveness to influenza vaccine in the population.

7.
Front Genet ; 12: 725538, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745208

RESUMEN

Background: Although previous studies have proposed leptin plays an important role in energy metabolism as well as in immune response, the effects of leptin-related genes on influenza vaccine-induced immune response remain unexplored. In this study, we aimed to investigate the potential association of leptin gene (LEP), leptin receptor gene (LEPR), and peroxisome proliferator activated receptor gamma gene (PPARG) polymorphisms with humoral immune response to influenza vaccine. Methods: Based on the seroconversion to influenza vaccine, 227 low-responders and 365 responders were selected in this study, and 11 candidate single nucleotide polymorphisms (SNPs) were genotyped using the MassARRAY technology platform. Univariate and multivariate logistic regression analyses were used to explore the association of SNPs in LEP, LEPR, and PPARG with humoral immune response to influenza vaccine. We also conducted a stratified analysis by gender to further clarify this association. The haplotypes analysis was performed using SNPStats. Results: Significant differences were observed in the genotypic distribution of PPARG rs17793951 between the two groups (p = 0.001), and the PPARG rs17793951 AG + GG genotype was associated with a higher risk of low responsiveness to influenza vaccine adjusted for gender and age (additive genetic model: OR = 2.94, 95% CI = 1.67-5.19, dominant genetic model: OR = 2.81, 95% CI = 1.61-4.92). No significant association of other SNPs in LEP and LEPR with immune response to influenza vaccine was found. The stratified analysis found the gender difference in the association of LEPR and PPARG variants with immune response to influenza vaccine. We found that LEPR rs6673591 GA + AA genotype was correlated with low responsiveness to influenza vaccine only in males (OR = 1.96, 95% CI = 1.05-3.67), and PPARG rs17793951 AG + GG genotype was associated with low responsiveness to influenza vaccine in females (OR = 3.28, 95% CI = 1.61-6.67). Compared with the CGGAGGC haplotype composed of LEPR rs1327118, rs7602, rs1137101, rs1938489, rs6673591, rs1137100, and rs13306523, the CAAAAAC haplotype was positively correlated with immune response of influenza vaccine (OR = 0.34, 95% CI = 0.15-0.77). Haplotype TG comprised of PPARG rs796313 and rs17793951 was associated with a 2.85-fold increased risk of low responsiveness to influenza vaccine. Conclusion: Our study identified that PPARG rs17793951 variants were significantly associated with the immune response to influenza vaccine.

8.
China CDC Wkly ; 3(44): 918-922, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34745692

RESUMEN

INTRODUCTION: During the coronavirus disease 2019 (COVID-19) pandemic, the circulation of seasonal influenza virus declined globally and remained below previous seasonal levels. We analyzed the results of the epidemiology, antigenic, and genetic characteristics, and antiviral susceptibilities of seasonal influenza viruses isolated from the mainland of China during October 5, 2020 through September 5, 2021, to better assess the risk of influenza during subsequent influenza season in 2021-2022. METHODS: Positive rates of influenza virus detection during this period were based on real-time polymerase chain reaction (PCR) detection by the Chinese National Influenza Surveillance Network laboratories, and isolated viruses from influenza positive samples were submitted to the Chinese National Influenza Center. Antigenic analyses for influenza viruses were conducted using the hemagglutination inhibition assay. Next-generation sequencing was used for genetic analyses. Viruses were tested for resistance to antiviral medications using a phenotypic assay and next-generation sequencing. RESULTS: In southern China, the influenza positivity rate was elevated especially after March 2021 and was higher than the same period the previous year with the COVID-19 pandemic. In northern China, influenza positive rate peaked at Week 18 in 2021 and has declined since then. Nearly all isolated viruses were B/Victoria lineage viruses during the study period, and 37.3% of these viruses are antigenically similar to the reference viruses representing the vaccine components for the 2020-2021 and 2021-2022 Northern Hemisphere influenza season. All seasonal influenza viruses were susceptible to neuraminidase inhibitors and endonuclease inhibitors. CONCLUSIONS: Influenza activity has gradually increased in the mainland of China in 2021, although the intensity of activity is still lower than before the COVID-19 pandemic. The diversity of circulating influenza types/subtypes decreased, with the vast majority being B/Victoria lineage viruses. The surveillance data from this study suggest that we should strengthen influenza surveillance during the upcoming traditional influenza season. It also provided evidence for vaccine recommendations and prevention and control of influenza and clinical use of antiviral drugs.

9.
Pulm Circ ; 11(2): 20458940211011027, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34221349

RESUMEN

AIMS: The virus is common in patients with viral pneumonia. However, the viral etiology and clinical features of patients with viral pneumonia in China remain unclear. The main purpose of this study was to analyze the viral causes and epidemiology of patients with viral pneumonia in Beijing, which can significantly improve the pertinence and accuracy of clinical treatment of the disease. METHODS: Firstly, 1539 respiratory specimens of pneumonia (oropharyngeal swabs, nasopharyngeal swabs, saliva samples and bronchoalveolar lavage fluid) were collected from 19 hospitals in Beijing from September 2015 to August 2018. Then, TaqMan low-density microfluidic chip technology was used to detect viral pneumonia specimens in 1539 respiratory tract specimens of pneumonia and determine the types of viral bacteria in them. Lastly, the analysis of demographic, clinical and etiological data of patients with viral pneumonia was performed. RESULTS: The results showed that among the 1539 respiratory tract specimens with pneumonia, 760 were detected as viral pneumonia specimens, with a positive rate of 49.4%. Among which, 467 were infected with mono-viral and 293 were infected with multi-viral. Influenza A virus (Flu A), mycoplasma pneumoniae (MPn), Ebola virus (EBV) and herpes simplex virus type 1 (HSV-1) were the major viral components in the samples of these patients. Furthermore, these viral species were significantly associated with sample sources, onset season and certain clinical characteristics. DISCUSSION: Our findings may provide corresponding treatment strategies for viral pneumonia patients infected with specific viruses.

10.
Front Immunol ; 12: 664024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276655

RESUMEN

Background: Annual vaccination is the most effective prevention of influenza infection. Up to now, a series of studies have demonstrated the role of genetic variants in regulating the antibody response to influenza vaccine. However, among the Chinese population, the relationship between genetic factors and the responsiveness to influenza vaccination has not been clarified through genome-wide association study (GWAS). Method: A total of 1,968 healthy volunteers of Chinese descent were recruited and 1,582 of them were available for the subsequent two-stage analysis. In the discovery stage, according to our inclusion criteria, 123 of 1,582 subjects were selected as group 1 and received whole-genome sequencing to identify potential variants and genes. In the verification stage, 29 candidate variants identified by GWAS were selected for further validation in 481 subjects in group 2. Besides, we also analyzed nine variants from previously published reports in our study. Results: Multivariate logistic regression analysis showed that compared with the TT genotype of ZBTB46 rs2281929, the TC + CC genotype was associated with a lower risk of low responsiveness to influenza vaccination adjusted for gender and age (Group 2: P = 7.75E-05, OR = 0.466, 95%CI = 0.319-0.680; Combined group: P = 1.18E-06, OR = 0.423, 95%CI = 0.299-0.599). In the combined group, IQGAP2 rs2455230 GC + CC genotype was correlated with a lower risk of low responsiveness to influenza vaccination compared with the GG genotype (P = 8.90E-04, OR = 0.535, 95%CI = 0.370-0.774), but the difference was not statistically significant in group 2 (P = 0.008). The antibody fold rises of subjects with ZBTB46 rs2281929 TT genotype against H1N1, H3N2,and B were all significantly lower than that of subjects with TC + CC genotype (P < 0.001). Compared with IQGAP2 rs2455230 GC + CC carriers, GG carriers had lower antibody fold rises to H1N1 (P = 0.001) and B (P = 0.032). The GG genotype of rs2455230 tended to be correlated with lower antibody fold rises (P = 0.096) against H3N2, but the difference was not statistically significant. No correlation was found between nine SNPs from previously published reports and the serological response to influenza vaccine in our study. Conclusion: Our study identified two novel candidate missense variants, ZBTB46 rs2281929 and IQGAP2 rs2455230, were associated with the immune response to influenza vaccination among the Chinese population. Identifying these variants will provide more evidence for future research and improve the individualized influenza vaccination program.


Asunto(s)
Variación Genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/genética , Gripe Humana/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Niño , Preescolar , China/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Lactante , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Vigilancia de la Población , Vacunación , Adulto Joven
11.
Diagn Microbiol Infect Dis ; 100(4): 115388, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34030102

RESUMEN

BACKGROUND: The continuous evolution of influenza viruses is monitored by the World Health Organization Global Influenza Surveillance and Response System. Sample quality is essential for surveillance quality. METHODS: To evaluate the RNA degradation of clinical samples, influenza-like illness samples were collected from four sentinel hospitals, and seasonal influenza was tested by real-time reverse transcription polymerase chain reaction and quantified by digital reverse transcription polymerase chain reaction at different time points. RESULTS: RNA degradation was observed in the majority of samples eight days after sample collection. A significant and faster rate of RNA content reduction was observed in low viral load samples (<10 copies/µl) than in high viral load samples (>10 copies/µl), stored at 2 to 8°C for up to eight days. RNase P (RNP) RNA, which is a key indicator to evaluate sample collection quality, was detected. Sample collection quality was uneven in different hospitals. CONCLUSION: Low viral load samples increase the risk of false negatives due to RNA degradation to undetectable levels.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/diagnóstico , Estabilidad del ARN , ARN Viral/metabolismo , Manejo de Especímenes/normas , Carga Viral/estadística & datos numéricos , Hospitales/estadística & datos numéricos , Humanos , Gripe Humana/virología , ARN Viral/genética , Vigilancia de Guardia
12.
Influenza Other Respir Viruses ; 15(2): 262-269, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32978902

RESUMEN

BACKGROUND: In mainland China, seasonal influenza disease burden at community level is unknown. The incidence rate of influenza virus infections in the community is difficult to determine due to the lack of well-defined catchment populations of influenza-like illness surveillance sentinel hospitals. OBJECTIVES: We established a community-based cohort to estimate incidence of seasonal influenza infections indicated by serology and protection conferred by antibody titers against influenza infections during 2018-2019 influenza season in northern China. METHODS: We recruited participants in November 2018 and conducted follow-up in May 2019 with collection of sera every survey. Seasonal influenza infections were indicated by a 4-fold or greater increase of hemagglutination inhibition (HI) antibody between paired sera. RESULTS: Two hundred and three children 5-17 years of age and 413 adults 18-59 years of age were followed up and provided paired sera. The overall incidence of seasonal influenza infection and incidence of A(H3N2) infection in children (31% and 17%, respectively) were significantly higher than those in adults (21% and 10%, respectively). The incidences of A(H1N1)pdm09 infection in children and adults were both about 10%, while the incidences of B/Victoria and/Yamagata infection in children and adults were from 2% to 4%. HI titers of 1:40 against A(H1N1)pdm09 and A(H3N2) viruses were associated with 63% and 75% protection against infections with the two subtypes, respectively. CONCLUSIONS: In the community, we identified considerable incidence of seasonal influenza infections. A HI titer of 1:40 could be sufficient to provide 50% protection against influenza A virus infections indicated by serology.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Adulto , Anticuerpos Antivirales , Niño , China/epidemiología , Humanos , Incidencia , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología , Estaciones del Año
13.
Virology ; 545: 1-9, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32174453

RESUMEN

The emergence of resistant mutants to the wildly used neuraminidase inhibitors (NAIs) makes the development of novel drugs necessary. Favipiravir (T-705) is one of the RNA-dependent RNA polymerase (RdRp) inhibitors developed in recent years. To examine the efficacy of T-705 against influenza B virus infections in vivo, C57BL/6 mice infected with wild-type or oseltamivir-resistant influenza B/Memphis/20/96 viruses were treated with T-705. Starting 2 h post inoculation (hpi), T-705 was orally administered to mice BID at dosages of 50, 150, or 300 mg/kg/day for 5 days. Oseltamivir was used as control. Here, we showed that T-705 protected mice from lethal infection in a dose-dependent manner. T-705 administration also significantly reduced viral loads and suppressed pulmonary pathology. In addition, phenotypic assays demonstrated that no T-705-resistant viruses emerged after T-705 treatment. In conclusion, T-705 can be effective to protect mice from lethal infection with both wild-type and oseltamivir-resistant influenza B viruses.


Asunto(s)
Amidas/administración & dosificación , Antivirales/administración & dosificación , Farmacorresistencia Viral , Virus de la Influenza B/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Oseltamivir/administración & dosificación , Pirazinas/administración & dosificación , Animales , Femenino , Humanos , Virus de la Influenza B/genética , Virus de la Influenza B/fisiología , Gripe Humana/virología , Ratones , Ratones Endogámicos C57BL
16.
Emerg Microbes Infect ; 8(1): 989-999, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31267843

RESUMEN

It has recently been proposed that the Eurasian avian-like H1N1 (EA H1N1) swine influenza virus (SIV) is one of the most likely zoonotic viruses to cause the next influenza pandemic. Two main genotypes EA H1N1 viruses have been recognized to be infected humans in China. Our study finds that one of the genotypes JS1-like viruses are avirulent in mice. However, the other are HuN-like viruses and are virulent in mice. The molecular mechanism underlying this difference shows that the NP gene determines the virulence of the EA H1N1 viruses in mice. In addition, a single substitution, Q357K, in the NP protein of the EA H1N1 viruses alters the virulence phenotype. This substitution is a typical human signature marker, which is prevalent in human viruses but rarely detected in avian influenza viruses. The NP-Q357K substitution is readily to be occurred when avian influenza viruses circulate in pigs, and may facilitate their infection of humans and allow viruses also carrying NP-357K to circulate in humans. Our study demonstrates that the substitution Q357K in the NP protein plays a key role in the virulence phenotype of EA H1N1 SIVs, and provides important information for evaluating the pandemic risk of field influenza strains.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Mutación Missense , Infecciones por Orthomyxoviridae/veterinaria , Proteínas de Unión al ARN/genética , Enfermedades de los Porcinos/virología , Proteínas del Núcleo Viral/genética , Animales , China , Femenino , Genotipo , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae/virología , Filogenia , Proteínas de Unión al ARN/metabolismo , Porcinos , Proteínas del Núcleo Viral/metabolismo , Virulencia , Replicación Viral
17.
Virol J ; 16(1): 87, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266524

RESUMEN

BACKGROUND: Human infection with avian influenza H7N9 virus was first reported in 2013. Since the fifth epidemic, a highly pathogenic avian influenza (HPAI) H7N9 virus has emerged and caused 33 human infections. Several potential NAI resistance sites have been found in human cases. However, the drug susceptibility and replication ability of HPAI H7N9 virus with such substitutions have not yet been studied. METHODS: Thirty-three HPAI H7N9 virus strains were isolated from human cases in China, and then sequences were analyzed to identify potential NAI resistance sites. Recombinant influenza viruses were generated to evaluate the effect of NA amino acid substitutions on NAI (oseltamivir or zanamivir) susceptibility and viral replication efficiency in MDCK cells. RESULTS: Four potential NAI resistance sites, R292 K, E119V, A246T or H274Y, were screened. All four substitutions conferred either reduced or highly reduced susceptibility to oseltamivir or zanamivir. 292 K not only highly reduced the susceptibility of HPAI H7N9 to oseltamivir but also induced an increase in the IC50 of zanamivir. 119 V or 274Y conferred reduced susceptibility of HPAI H7N9 to oseltamivir. Additionally, 246 T conferred reduced susceptibility to zanamivir. All tested NAI-resistant viruses were capable of replication in MDCK cells. The virus yields of rg006-NA292K were lower than those of rg006-NA292R at 24, 48, 72 and 96 h postinfection (P<0.05). Rg006-NA119V, rg006-NA246T or rg006-NA274Y showed comparable replication capacity to wild-type virus (except for rg006-NA274Y at 96 h, P<0.05). CONCLUSIONS: All 4 amino acid substitutions (R292 K, E119V, A246T or H274Y) in NA reduced the susceptibility of HPAI H7N9 to NAIs. The NAI-resistant mutations in HPAI H7N9, in most cases, did not reduce the replication ability of the virus in mammalian cells. Special attention needs to be paid to these mutations, and the development of new anti-H7N9 drugs is of great importance.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Subtipo H7N9 del Virus de la Influenza A/efectos de los fármacos , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Humana/virología , Replicación Viral/efectos de los fármacos , Sustitución de Aminoácidos , Animales , Pollos , Perros , Farmacorresistencia Viral/genética , Humanos , Subtipo H7N9 del Virus de la Influenza A/fisiología , Gripe Aviar , Células de Riñón Canino Madin Darby , Neuraminidasa/antagonistas & inhibidores , Oseltamivir/farmacología , Zanamivir/farmacología
18.
Influenza Other Respir Viruses ; 13(5): 496-503, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31187583

RESUMEN

BACKGROUND: Highly pathogenic avian influenza (HPAI) A(H7N9) virus emerged and caused human infections during the 2016-2017 epidemic wave of influenza A(H7N9) viruses in China. We report a human infection with HPAI H7N9 virus and six environmental isolates in Fujian Province, China. METHODS: Environmental surveillance was conducted in live poultry markets and poultry farms in Fujian, China. Clinical and epidemiologic data and samples were collected. Real-time RT-PCRs were conducted for each sample, and H7-positive samples were isolated using embryonated chicken eggs. Full genomes of the isolates were obtained by next-generation sequencing. Phylogenetic analysis and antigenic analysis were conducted. RESULTS: A 59-year-old man who raised about 1000 ducks was identified as HPAI H7N9 infection. Six HPAI H7 viruses were isolated from environmental samples, including five H7N9 viruses and one H7N6 virus. Phylogenetic results showed the human and environmental viruses are highly genetically diverse and containing significantly different gene constellation from that of other HPAI H7N9 previously reported. The internal genes derived from H7N9/H9N2, H5N6, and the Eurasian wild-bird gene pool, indicating waterfowl-originated genotypes, have emerged in HPAI H7N9/N6 viruses and caused human infection. CONCLUSION: The new genotypes raise the concern that these HPAI H7 viruses might transmit back into migratory birds and spread to other countries as the HPAI H5Nx viruses. Considering their capability of causing severe infections in both human and poultry, the HPAI H7 viruses in this study pose a risk to public health and the poultry industry and highlight the importance of sustained surveillance of these viruses.


Asunto(s)
Patos/virología , Genoma Viral , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Aviar/transmisión , Gripe Humana/epidemiología , Animales , China/epidemiología , Epidemias , Monitoreo Epidemiológico , Humanos , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Masculino , Persona de Mediana Edad , Filogenia , Aves de Corral/virología , Enfermedades de las Aves de Corral/virología , Salud Pública
19.
Euro Surveill ; 24(21)2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31138362

RESUMEN

After no reported human cases of highly pathogenic avian influenza (HPAI) H7N9 for over a year, a case with severe disease occurred in late March 2019. Among HPAI H7N9 viral sequences, those recovered from the case and from environmental samples of a poultry slaughtering stall near their home formed a distinct clade from 2017 viral sequences. Several mutations possibly associated to antigenic drift occurred in the haemagglutinin gene, potentially warranting update of H7N9 vaccine strains.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Gripe Humana/epidemiología , Gripe Humana/virología , Neuraminidasa/genética , Animales , China/epidemiología , Enfermedades Transmisibles Emergentes/epidemiología , Brotes de Enfermedades , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Humana/diagnóstico , Neuraminidasa/metabolismo , Filogenia , Neumonía/diagnóstico por imagen , Reacción en Cadena de la Polimerasa , Aves de Corral/virología , Enfisema Pulmonar/diagnóstico por imagen , Tomografía Computarizada por Rayos X
20.
Virology ; 529: 135-143, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30703577

RESUMEN

H9N2 avian influenza viruses (AIVs) have become panzootic and caused sporadic human cases since 1998. Based on the poultry-related environmental surveillance data in mainland China from 2013 to 2016, a total of 68 representative environment isolates were selected and further investigated systematically. Phylogenetic analysis indicated that Y280-like H9N2 viruses have been predominant during 2013-2016 and acquired multiple specific amino acid substitutions that might favor viral transmission from avian to mammalians. Additionally, the viruses have undergone dramatic evolution and reassortment, resulting in an increased genetic diversity or acting as the gene contributors to new avian viruses. Receptor-binding tests indicated that most of the H9N2 isolates bound to human-type receptor, making them easily cross the species barrier and infect human efficiently. Our results suggested that the H9N2 AIVs prevalent in poultry may pose severe public health threat.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Aves de Corral/virología , Animales , China , Microbiología Ambiental , Genoma Viral , Genotipo , Vivienda para Animales , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Vigilancia de la Población , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...